

Three-terminal positive voltage regulator

Features

- Output Current of 1.2A
- Thermal Overload Protection
- Short Circuit Protection

- Output transistor safe area protection
- No external components
- Package: TO220 and TO263
- Output voltage accuracy: tolerance ±5%

General Description

TX78 XX is three-terminal positive regulators. One of these regulators can deliver up to 1.2A of output current. The internal limiting and thermal -shutdown features of the regulator make them essentially immune to overload. When used as a

replacement for a zener diode-resistor Combination, an effective improvement in output impedance can be obtained, together with lower quies cent current.

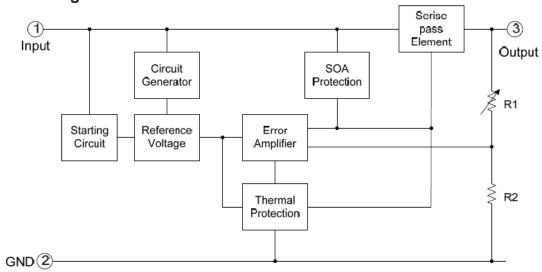
Pin Configuration

- 1.Input
- 2.GND
- 3.Output

TO263 (Top View)

1.Input 2.GND

3.Output



Three-terminal positive voltage regulator

Selection Table

Part No.	Output Voltage	Package	Marking
TX7805	5.0V		
TX7806	6.0V	TO220	
TX7808	8.0V	TO220 TO263	
TX7809	9.0V		
TX7812	12V		

Block Diagram

Absolute Maximum Ratings (Ta=25 $^{\circ}$ C)

Parameter	Rating	Unit		
Input supply voltage: VIN	35	V		
MAX. Output current:lout	1200	mA		
Maximum junction temperature:Tj	-25~125	$^{\circ}$		
Storage temperature:Tstr	-65~125	$^{\circ}$		
Soldering temperature and time	+260(Recommended 10S)	$^{\circ}$		

Note: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Three-terminal positive voltage regulator

Electrical Characteristics

1 、 7805 (refer to the test circuits , TJ = -55 to 150 $^{\circ}$ C VI = 10 V, IO = 500 mA, CI = 0.33 μ F, CO = 0.1 μ F unless otherwise specified).

Parameter	Symbol	Test Condition		MIN	TYP	MAX	UNIT
		TJ = +25 ℃		4.8	5	5.2	V
Output Voltage	VO	IO = 5mA to 1A, PO≤15W		4.75	5	5.25	
		VI = 8V to 20V					
Line Regulation (Note1)	ΔVO	TJ = +25℃	VI = 7V to 25V			100	mV
Line Regulation (Note1)	Δ۷Ο		VI = 8V to 12V			50	
Load Regulation (Note1)	ΔVO	$TJ = +25^{\circ}C$, $IO = 5mAto 1.2A$				100	mV
		TJ=+25℃, IO=250mAto 750mA				50	
Quies cent Current	IQ	TJ = +25℃				6	mA
Out as a sent Commant Change	ΔIQ	IO = 5mA to 1A				0.5	A
Quies cent Current Change		VI = 8V to 25V				0.8	mA
Quiescent Current Change	∆ Vo/∆ T	IO = 5mA			0.6		mV/℃
Short Circuit Current	ISC	TJ = +25℃ , VI = 35V			0.75	1.2	А

2 、 7806 (refer to the test circuits , TJ = -55 to 150 $^{\circ}$ C VI = 11 V, IO = 500 mA, CI = 0.33 μ F, CO = 0.1 μ F unless otherwise specified).

Parameter	Symbol	Test Condition		MIN	TYP	MAX	UNIT
		TJ = +25 ℃		5.75	6	6.25	V
Output Voltage	VO	IO = 5mA to 1A, PO≤15W		5.65	5	6.35	
		VI = 9V to 21V					
Line Degulation (Nated)	ΔVO	TJ = +25℃	VI = 8V to 25V			100	mV
Line Regulation (Note1)	Δ ۷Ο	IJ = +25 C	VI = 9V to 13V			50	
	ΔVO	TJ = +25℃, IO = 5mAto 1.2A				100	mV
Load Regulation (Note1)		TJ=+25 $^{\circ}$ C, IO=250mAto 750mA				50	
Quies cent Current	IQ	TJ = +25℃				6	mA
Quias cont Current Change	ΔIQ	IO = 5mA to 1A				0.5	A
Quiescent Current Change		VI = 9V to 25V				0.8	mA
Quiescent Current Change	∆ Vo/∆ T	IO = 5mA			0.7		mV/°C
Short Circuit Current	ISC	TJ = +25℃ , VI = 35V			0.75	1.2	А

Three-terminal positive voltage regulator

3、7808 (refer to the test circuits, TJ = -55 to 150 $^{\circ}$ C VI = 14 V, IO = 500 mA, CI = 0.33 μ F, CO = 0.1 μ F unless otherwise specified).

Parameter	Symbol	Test Condition	MIN	TYP	MAX	UNIT	
	VO	TJ = +25 ℃		7.7	8	8.3	V
Output Voltage		IO = 5mA to 1A, PO≤15W		7.6	8	8.4	
		VI =11.5V to 23V					
Line Demolation (Noted)	A. V.O.	T25°∩	VI = 10.5V to 25V			100	mV
Line Regulation (Note1)	ΔVO	TJ = +25℃	VI = 11V to 17V			50	
	ΔVO	TJ = +25℃, IO = 5mAto 1.2A				100	mV
Load Regulation (Note1)		TJ = +25℃, IO = 250mAto				50	
		750mA					
Quies cent Current	IQ	TJ = +25℃				6	mA
0.:	ΔIQ	IO = 5mA to 1A				0.5	^
Quies cent Current Change		VI = 11.5V to 25V				1	mA
Quiescent Current Change	∆ Vo/∆ T	IO = 5mA			1		mV/℃
Short Circuit Current	ISC	TJ = +25℃ , VI = 35V			0.75	1.2	Α

4 、 7809 (refer to the test circuits , TJ = -55 to 150 $^{\circ}$ C VI = 15 V, IO = 500 mA, CI = 0.33 μ F, CO = 0.1 μ F unless otherwise specified).

Parameter	Symbol	Test Condition		MIN	TYP	MAX	UNIT
		TJ = +25℃		8.64	9	9.36	V
Output Voltage	VO	IO = 5mA to 1A, PO≤15W		8.55	9	9.45	
		VI =11.5V to 26V					
Line Degulation (Note 1)	ΔVO	TJ = +25℃	VI = 11.5V to 26V			100	mV
Line Regulation (Note1)	Δ۷Ο	IJ = +25 C	VI = 12V to 18V			50	
	ΔVO	TJ = +25℃, IO = 5mAto 1.2A				100	
Load Regulation (Note1)		$TJ = +25^{\circ}C$, $IO = 250 \text{mAto}$				50	mV
		750mA					
Quies cent Current	IQ	TJ = +25℃				6	mA
Outles sent Comment Change	ΔIQ	IO = 5mA to 1A				0.5	mA
Quiescent Current Change		VI = 11.5V to 26V				1	
Quiescent Current Change	∆ Vo/∆ T	IO = 5mA			1		mV/℃
Short Circuit Current	ISC	TJ = +25℃ , VI = 35V			0.75	1.2	А

Three-terminal positive voltage regulator

5 \, 7812 (refer to the test circuits , TJ = -55 to 150 $^{\circ}$ C VI = 19 V, IO = 500 mA, CI = 0.33 μ F, CO = 0.1 μ F unless otherwise specified).

Parameter	Symbol	Test Condition		MIN	TYP	MAX	UNIT
	VO	TJ = +25 ℃		11.5	12	12.5	V
Output Voltage		IO = 5mA to 1A, PO≤15W		11.4	12	12.6	
		VI =15.5V to 27V					
Line De mulation (Natad)	A) (O	T1 .25°C	VI = 14.5V to 30V			100	mV
Line Regulation (Note1)	ΔVO	TJ = +25℃	VI = 16V to 22V			50	
	ΔVO	TJ = +25℃, IO = 5mAto 1.2A				100	mV
Load Regulation (Note1)		TJ = +25℃, IO = 250mAto				F0	
		750mA				50	
Quies cent Current	IQ	TJ = +25℃				6	mA
Outles sent Comment Change	ΔIQ	IO = 5mA to 1A				0.5	A
Quies cent Current Change		VI = 15V to 30V				1	mA
Quiescent Current Change	∆ Vo/∆ T	IO = 5mA			1.5		mV/℃
Short Circuit Current	ISC	TJ = +25℃ , VI = 35V			0.75	1.2	Α

LNR: Line Regulation. The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

LDR: Load Regulation. The change in output voltage for a change in load current at constant chip temperature.

Three-terminal positive voltage regulator

Typical Characteristics

Figure 1: Dropout Voltage vs Junction Temperature

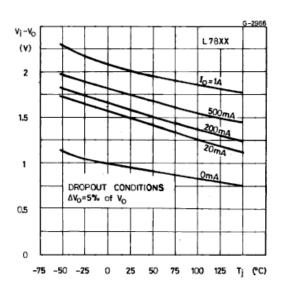


Figure 2: Peak Output Current vs Input/output Differential Voltage

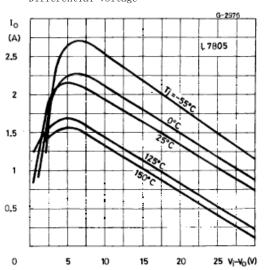


Figure3: Supply Voltage Rejection vs Frequency Temperature

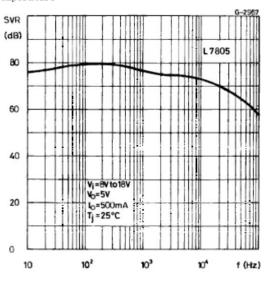
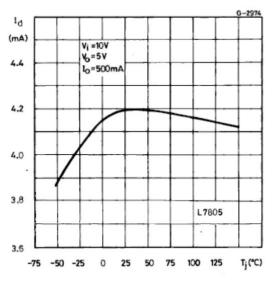



Figure 4: Quiescent Current vs Junction

Three-terminal positive voltage regulator

Figure 5: Output Voltage vs Junction Temperature

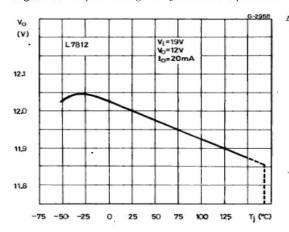


Figure 6: Load Transient Response

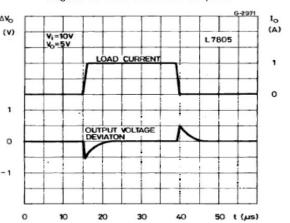


Figure 7: Output Impedance vs Frequency

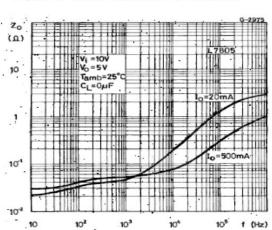


Figure 8: Line Transient Response

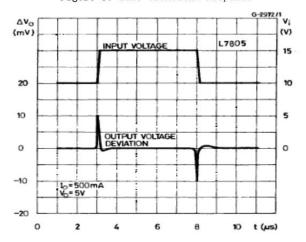
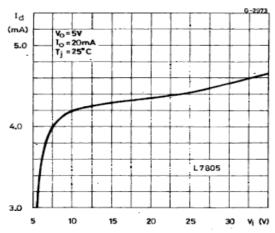



Figure 9: Quiescent Current vs Input Voltage

Three-terminal positive voltage regulator

Operation Description

TX78 XX is designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high frequency characteristics to insure stable operation under all load conditions. A0.33µFor larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulator's input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Typical Application

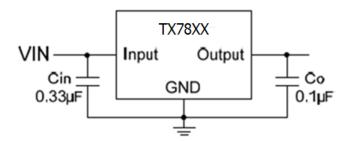


Fig.1 Fixed Output Regulator

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- Cin is required if regulator is located an appreciable distance from power supply filter.
- ■Co is not needed for stability; however, it does improve transient response.

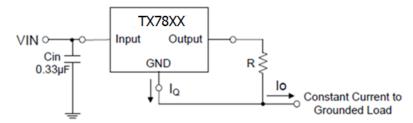


Fig.2 Constant Current Regulator

The TX78XX regulator can also be used as a current source when connected as Fig.2. In order to minimize dissipation the TX78XX is chosen in this application. Resistor R determines the current as

$$I_{O} = \frac{5V}{R} + I_{Q}$$

TX78XX Three-terminal positive voltage regulator

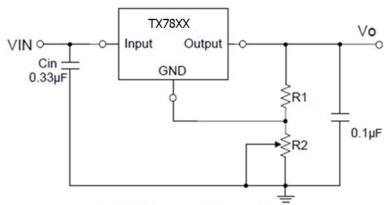
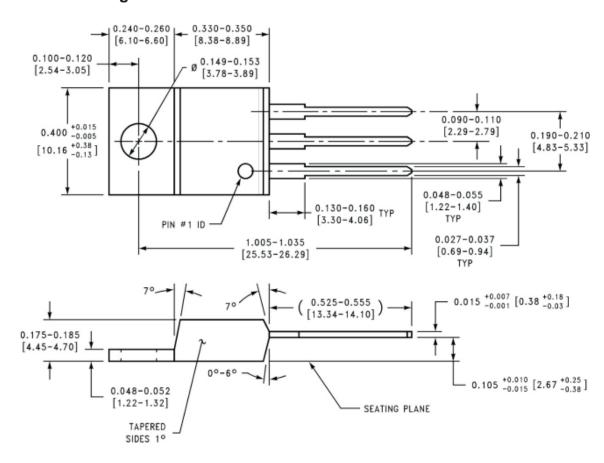


Fig.3 Adjustable Output Regulator


Vo=5V+(5V/R1+I_Q)*R2

5V/R1>3*IQ

Three-terminal positive voltage regulator

Package Information TO220 Package

TX78XX Three-terminal positive voltage regulator

TO263 Package 10,67 9,65 -6,22 Min -Exposed Thermal Tab 6,60 Min ◬ 9,65 8,38 15,88 0,91 → 0,25 W 2,54 0,25 0,25 OPTIONAL LEAD FORM